

Available online on 15 Jun, 2025 at <https://ijdra.com/index.php/journal>

International Journal of Drug Regulatory Affairs

Published by Diva Enterprises Pvt. Ltd., New Delhi

Associated with RAPS & Delhi Pharmaceutical Sciences & Research University

Copyright© 2013-25 IJDRA

Review Article

Open Access

Artificial Intelligence in Regulatory Compliance: Transforming Pharmaceutical and Healthcare Documentation

Anjaneyulu Muppalla, Beena Devi Maddi*, Nagabhushanam V Maddi

Department of Pharmaceutical Regulatory Affairs, Hindu College of Pharmacy, Amaravati Road, Guntur-522002, A.P.

Abstract

Regulatory compliance and documentation are critical components in the pharmaceutical and healthcare industries, ensuring patient safety, ethical practices, and adherence to global standards. Traditional compliance processes often involve time-consuming manual tasks prone to inefficiencies and human error. With the increasing complexity of regulations, data volume, and innovation pace, Artificial Intelligence (AI) has emerged as a transformative tool to enhance regulatory operations. This paper explores the integration of AI technologies—such as Natural Language Processing (NLP), Machine Learning (ML), and Robotic Process Automation (RPA)—into compliance workflows. Applications include automated document analysis, real-time regulatory intelligence, streamlined clinical trial documentation, EHR auditing, and adverse event detection. These technologies offer notable benefits, including improved accuracy, operational efficiency, cost reduction, and faster regulatory submissions. However, the adoption of AI also raises challenges related to data privacy, regulatory acceptance, system integration, and workforce adaptation. Ensuring transparency and maintaining ethical standards are essential for the successful deployment of AI in these high-stakes environments. Overall, AI presents a promising solution to modernize compliance frameworks, provided that its implementation is guided by robust governance and collaboration between industry stakeholders and regulators.

Keywords: Artificial Intelligence (AI), Regulatory Compliance, Pharmaceutical Industry, Healthcare Documentation, Natural Language Processing (NLP), Machine Learning (ML), Robotic Process Automation (RPA), Clinical Trials, Electronic Health Records (EHR), Data Privacy

Article Info: Received 18 May 2025; Review Completed 05 Jun 2024; Accepted 09 Jun 2025

Cite this article as:

Muppalla A, Maddi BD, Maddi NV. Artificial Intelligence in Regulatory Compliance: Transforming Pharmaceutical and Healthcare Documentation. *Int. J. Drug Reg. Affairs* [Internet]. 2025 Jun 15 [cited 2025 Jun 15]; 13(2):73-80. Available from:

<http://ijdra.com/index.php/journal/article/view/764>

DOI: <https://doi.org/10.22270/ijdra.v13i2.764>

*Corresponding author

1. Introduction

Artificial Intelligence (AI) encompasses a suite of technologies enabling machines to replicate human cognitive functions such as perception, reasoning, learning, and decision-making. (1) Core components of AI include Machine Learning (ML), Natural Language Processing (NLP), and Computer Vision, which collectively empower systems to process data, recognize patterns, and perform tasks traditionally requiring human intelligence. (2) The evolution of AI traces back to early conceptualizations of intelligent machines, gaining momentum with Alan Turing's foundational work and the coining of "artificial intelligence" at the 1956 Dartmouth Conference. Subsequent decades witnessed significant milestones, including the development of expert systems and advancements in neural networks, culminating in contemporary applications across various sectors. (3) In healthcare and pharmaceutical domains, AI has demonstrated transformative potential. ML algorithms assist in disease diagnosis and drug discovery; NLP facilitates the analysis of unstructured clinical data; and

AI-driven tools enhance patient care and operational efficiency. (4) Emerging technologies like ChatGPT exemplify AI's capacity to support clinical decision-making and patient engagement. (5) This paper explores the historical development of AI, its underlying technologies, and its integration into healthcare and pharmaceutical practices, highlighting the implications for drug regulatory affairs and future research directions. (6)

2. Objectives

- To identify key AI tools and platforms used in regulatory compliance workflows such as document management, pharmacovigilance, and submission tracking. (7)
- To analyse the benefits of integrating AI, including automation of repetitive tasks, real-time analytics, and reduction in compliance-related errors. (8)
- To compare features of leading AI platforms (e.g., Veeva Vault RIM, Master Control, Aris

Global Life Sphere) and their applications in regulatory operations. (9)

- To study real-world use cases where AI has accelerated regulatory approvals or improved audit readiness (10)
- To understand the challenges and limitations in implementing AI within existing regulatory frameworks and legacy systems. (11)
- To propose future directions for AI innovation in regulatory science and digital transformation in pharma.

3. Overview of AI Technologies Relevant to Compliance

AI encompasses various technologies, each with unique applications in compliance:

3.1 Machine Learning in Drug Safety and Pharmaceutical Research

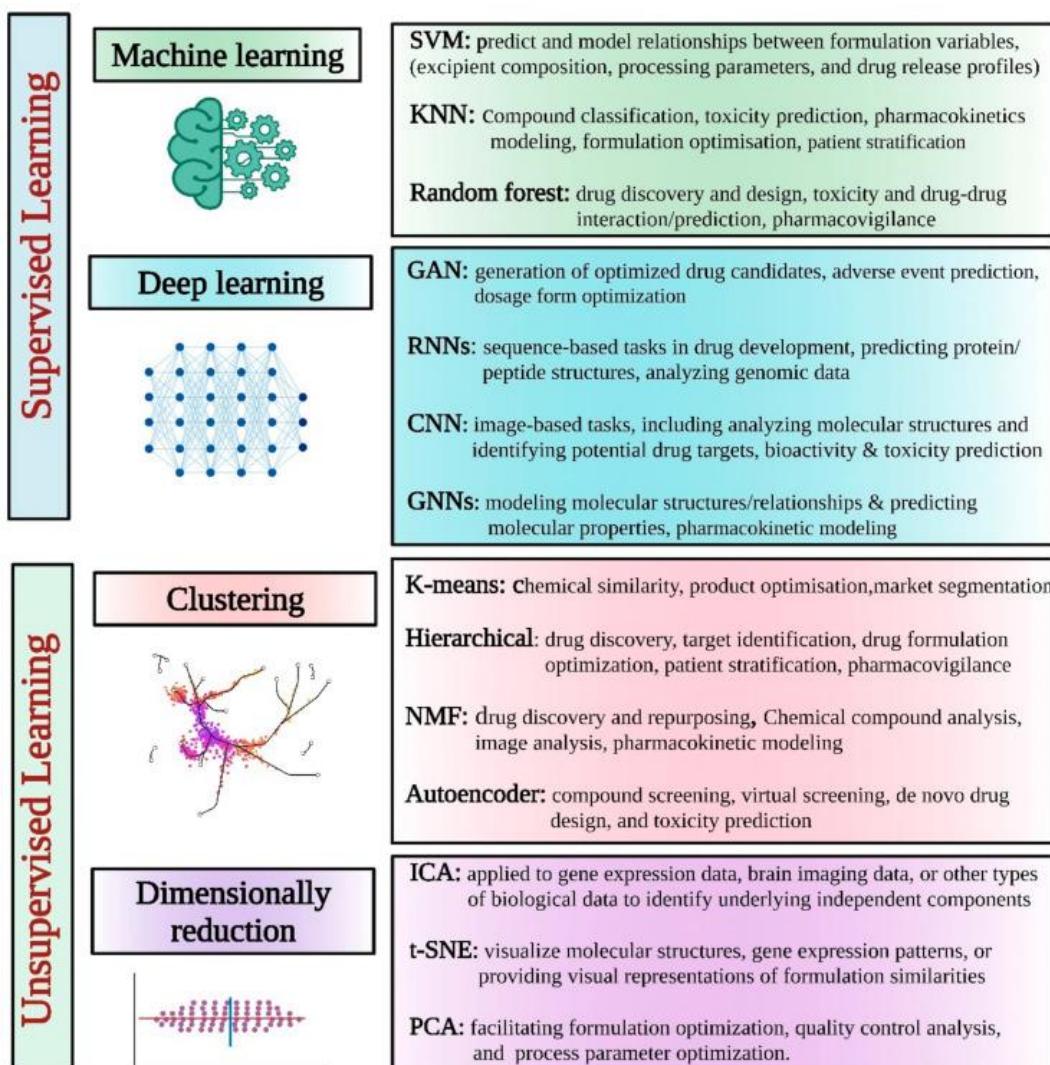


Figure 1. Types of Machine Learning

b) Applications in Drug Safety and Research

ML has emerged as a transformative tool in pharmaceutical research and regulatory science, offering significant improvements in data-driven decision-making:

Machine Learning (ML), a pivotal subset of Artificial Intelligence (AI), involves the development of algorithms that enable systems to learn from data and make predictions or decisions without being explicitly programmed for each specific task. As ML models are exposed to increasing volumes of data, their predictive accuracy and performance continue to improve.

a) Types of Machine Learning

- **Supervised Learning:** Utilizes labeled datasets to train models in predicting outcomes based on input-output relationships.
- **Unsupervised Learning:** Explores unlabeled data to uncover hidden patterns or groupings without predefined categories.
- **Reinforcement Learning:** Involves an agent interacting with its environment, learning to optimize decisions through feedback in the form of rewards or penalties.

- **Adverse Event Detection:** ML algorithms analyze large-scale datasets—including clinical trials, electronic medical records (EMRs), and pharmacovigilance reports—to identify potential

safety signals, adverse drug reactions, and risk factors in real time.⁽¹²⁾

- **Clinical Trial Optimization:** Historical trial data can be leveraged to design more efficient clinical studies. ML aids in determining optimal sample sizes, endpoints, and patient recruitment strategies, thereby increasing the likelihood of trial success and reducing costs.

Through its ability to process vast and complex datasets, ML contributes to safer drug development and more effective regulatory oversight, ultimately enhancing public health outcomes.

3.2 Natural Language Processing (NLP) in Pharmaceutical Regulatory Compliance

Natural Language Processing (NLP), a subfield of Artificial Intelligence (AI), enables machines to understand, interpret, and generate human language. By processing vast amounts of unstructured data—including medical literature, reports, and regulatory documents—NLP transforms language into actionable insights with consistency and accuracy.

a) Applications in the Pharmaceutical Industry

NLP plays a vital role in drug development, discovery, and commercialization by:

- **Literature Mining:** Identifying patterns and relationships relevant to drug safety and efficacy from scientific texts.
- **Label Analysis:** Extracting key entities (e.g., adverse effects, usage populations) to support regulatory evaluations.
- **Data Structuring:** Converting unstructured content into structured formats for use in analytics and decision-making.

b) NLP in Regulatory Compliance

As global regulations grow in complexity, NLP enhances compliance efforts through:

- **Regulatory Labeling:** Automates extraction of disease terms, contraindications, and dosage information from official drug labels. ⁽¹³⁾
- **Regulatory Intelligence:** Continuously monitors and processes updates from health authorities to ensure proactive compliance.
- **Regulatory Mapping:** Aligns unstructured data with international standards like IDMP, supporting global harmonization.

c) AI-Driven Compliance Functions

AI, powered by NLP, strengthens regulatory operations by:

- Analyzing legal texts and generating automated reports.
- Interpreting complex regulatory language. ⁽¹⁴⁾
- Monitoring risks, ensuring transparency, and promoting ethical use.

- Enhancing data protection and supporting innovation through clear compliance frameworks. ⁽¹⁵⁾

d) Implementation Strategies

Key strategies include:

- **Automated Document Review:** Extracts compliance obligations from regulatory texts.
- **Communication Monitoring:** Detects violations in internal communication. ⁽¹⁵⁾
- **Regulatory Reporting:** Generates standardized submissions for authorities.

e) Digitizing Regulatory Affairs with NLP

Pharmaceutical firms increasingly leverage NLP for:

- **Entity Extraction & Classification:** Organizing key data from regulatory documents.
- **Document Summarization & Search:** Streamlining access to relevant information.
- **Automated Content Creation:** Drafting summaries and converting clinical findings into structured submissions.
- **Predictive Analysis:** Anticipating regulatory expectations from historical data.

NLP thus offers powerful tools for enhancing compliance, efficiency, and innovation across the pharmaceutical regulatory landscape.

3.3 Robotics in Pharma Operations

a) Manufacturing

- **AI-enabled robotics** automate mixing, filling, labeling, and packaging with high precision, improving throughput and ensuring regulatory compliance. ⁽¹⁵⁾
- **Predictive maintenance** minimizes equipment downtime, enhancing production reliability.

b) Laboratory Automation

- Robotics handle tasks like liquid handling and sample testing, enabling high-throughput processing and reducing manual errors.

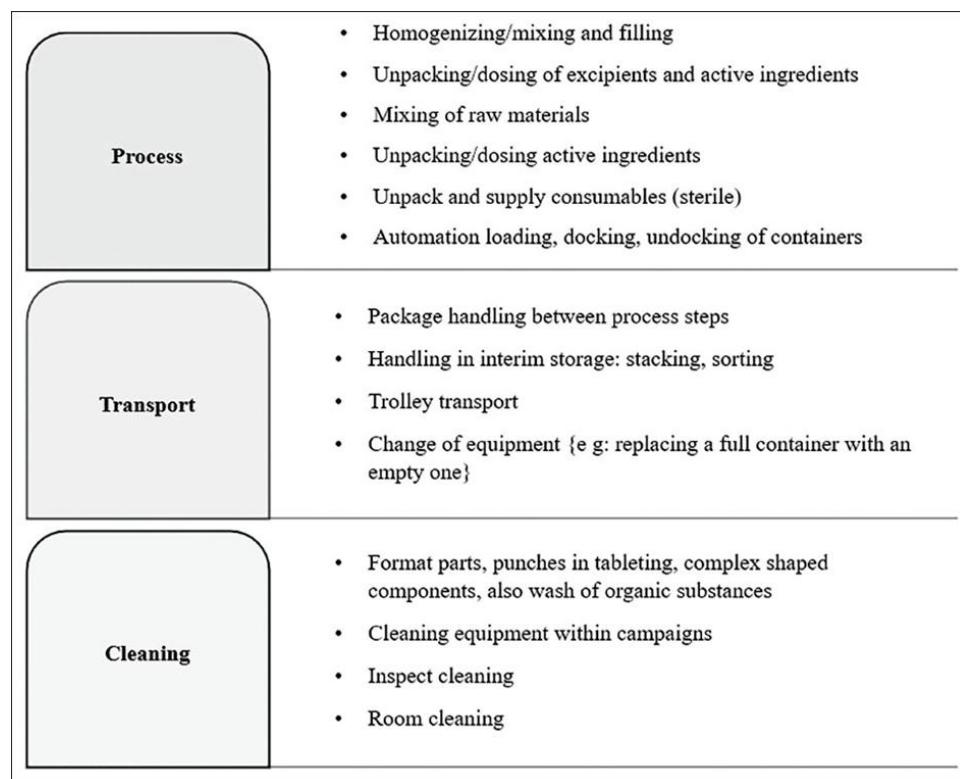
c) Sterile Processing

- Robots maintain aseptic environments for vial inspection and drug compounding, ensuring product safety and hygiene.

d) Distribution & Logistics

- Automated systems manage warehousing, material handling, and medicine delivery, improving accuracy and efficiency across the supply chain.

e) Automation in Compliance and Support Functions


- **Regulatory Compliance:** Automated data entry, documentation, and audit trails support adherence to GMP and FDA standards.

- **Claims Management:** Streamlined claims processing improves reimbursement timelines and reduces administrative burden.
- **Pharmacy Dispensing:** Robotic systems automate medication sorting, labeling, and inventory tracking, reducing errors and enhancing patient safety.

f) Emerging Trends and Future Outlook

- **AI-driven biomarker discovery** and precision medicine will reshape therapy development. (16)

- **Smart clinical trials** using predictive analytics and real-time monitoring will become standard.
- **Robotic process automation (RPA)** will expand into procurement, quality control, and compliance reporting.
- **Supply chain transformation** through AI-enabled forecasting, inventory optimization, and autonomous logistics will support scalable, global medicine distribution.

Figure 2. Robotics in Pharma Operations

3.4 Block chain for Supply Chain Integrity

Block chain enables secure, real-time, item-level tracking, reducing data manipulation risks and enhancing stakeholder trust. It addresses issues of data integrity, consistency, and vulnerability across the pharmaceutical supply chain. However, widespread adoption remains limited, particularly among smaller firms due to cost constraints. Technological interventions are crucial for verifying high-value drugs, especially at fraud-prone supply chain points.

a) Regulatory Considerations in Clinical Research

- **Clinical Research Databases**

The regulatory status of block chain-based databases hinges on their purpose. Systems used for healthcare operations are often exempt from human subject protections, while those storing identifiable data for research fall under HIPAA and other federal regulations. Governance protocols must outline access controls and data use agreements. (17)

- **Oversight by Regulatory Bodies**

Databases involving human subjects may require IRB review under the Common Rule or FDA oversight if used for device evaluations. Real-world evidence from EHRs and registries is increasingly accepted for regulatory decisions.

- **Data Sharing and Confidentiality** NIH mandates data sharing in machine-readable formats and requires Certificates of Confidentiality to protect sensitive information. Disclosure is permitted only under legal or consent-based exceptions. (17)

- **Legal Recognition of Block chain Signatures** Cryptographically signed block chain records align with secure digital standards but face evolving legal recognition. States such as Arizona and Delaware have passed legislation to validate block chain records.

b) Methodology: Identifying Barriers to Adoption

A structured three-phase methodology was applied:

- **Phase 1:** Literature review and expert interviews identified key challenges.

- **Phase 2:** Interpretive Structural Modeling (ISM) mapped relationships among barriers.
- **Phase 3:** MICMAC analysis classified them by driving and dependency power.

c) ISM and MICMAC Analysis

ISM establishes hierarchical relationships among variables, while DEMATEL captures direct and indirect influences. MICMAC clusters variables into autonomous, dependent, linkage, and independent categories, guiding strategic resource allocation for blockchain adoption.

d) TEFCA Compliance

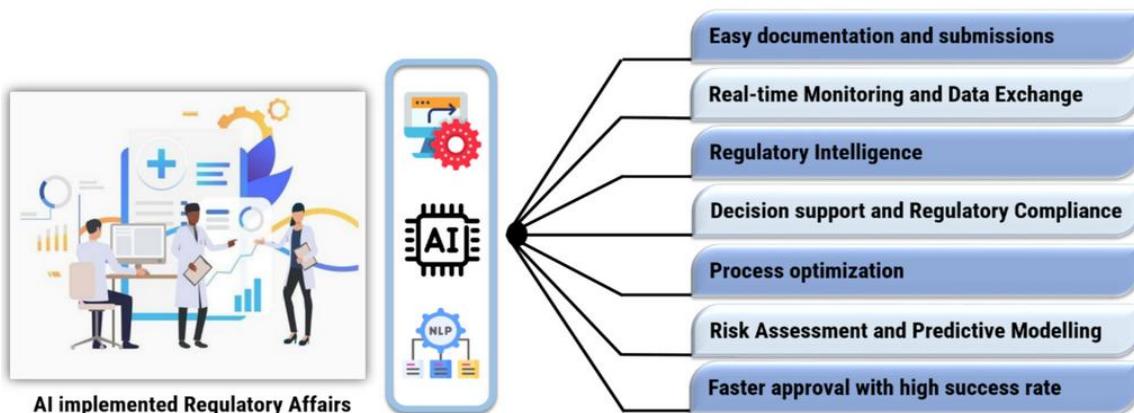


Figure 3. AI implemented Regulatory Affairs

f) Applications of AI in Regulatory Compliance

- **Document Management:** AI automates the extraction, classification, and review of compliance documents such as SOPs, trial protocols, and quality reports.
- **Clinical Trial Support:** NLP streamlines patient recruitment, consent form processing, and adverse event reporting.
- **Regulatory Intelligence:** AI systems track regulatory updates worldwide, mapping them to organizational policies.
- **Pharmacovigilance:** ML models detect safety signals in real time, improving adverse event surveillance.

The Trusted Exchange Framework and Common Agreement (TEFCA), part of the 21st Century Cures Act, promotes interoperability across EHR systems. Blockchain platforms should be designed to align with TEFCA standards for seamless integration into national data exchange frameworks.

e) Ethical Considerations

Block chain-based clinical studies involving participant payments must ensure ethical integrity. IRBs must evaluate compensation-particularly in cryptocurrencies -to prevent coercion. Investigators should justify valuation methods and ensure equitable compensation.

- **EHR Compliance:** AI audits electronic health records to ensure data privacy and accuracy.

4. Benefits of AI Integration

- **Efficiency and Speed:** Reduces time for data processing and submission generation.
- **Accuracy:** Minimizes human error in document analysis.
- **Cost-Effectiveness:** Freed up resources by automating low-value tasks.
- **Risk Management:** Identifies compliance gaps and emerging risks.

Audit Preparedness: Maintains real-time documentation aligned with regulatory standards

5. Case Studies and AI Platforms

5.1 Leveraging AI to Anticipate Regulatory Feedback and Accelerate Drug Development: Pfizer's Strategic Partnership with CytoReason

Pfizer aims to use AI to anticipate regulatory feedback, potentially saving billions in development delays and rejections. Senior leadership, like Boris Braylyan, envisions AI predicting regulator queries to streamline submission processes. While full AI integration isn't yet realized, Pfizer is investing in data infrastructure to reach that goal. A key initiative is its partnership with CytoReason to simulate the human immune system. This "disease weather map" uses single-cell sequencing and machine learning to identify biological targets and optimize drug applications. CytoReason's platform helped refine drug candidates and match them to responsive patient populations. Pfizer views this platform as a long-term digital transformation investment. Though early in development, such tools promise to reduce time and cost in drug R&D. Public results remain limited, with current achievements largely internal and exploratory. Broader AI adoption is challenged by legacy systems and complexities intensified by the global pandemic.

5.2 AstraZeneca's AI-Powered Transformation in Drug Development

AstraZeneca has invested over \$250 million in AI to accelerate drug discovery, particularly in oncology. Using NLP and Databricks, the company streamlined data integration from diverse scientific sources. AWS SageMaker was adopted to automate machine learning workflows, enhancing scalability and deployment. Generative AI supports predictive modeling and real-world evidence (RWE) analysis in clinical trials. Data insights generation time was cut from over six months to under 2.5 months. AI automation boosted data science productivity and hypothesis generation across teams. AstraZeneca built a knowledge graph to drive deeper insights and guide decision-making. Challenges included integrating heterogeneous data and ensuring ethical, privacy-compliant AI use. The company aims to further AI integration for trial design, drug development, and sustainability.

AstraZeneca's AI strategy exemplifies long-term innovation in global biopharma R&D. (17)

5.3 Johnson & Johnson's AI-Driven Transformation

Johnson & Johnson (J&J) adopted AI and intelligent automation (IA) to boost efficiency and innovation across pharmaceuticals, medical devices, and consumer health. The company created an Intelligent Automation Council to guide strategy and implementation. Robotic Process Automation (RPA) and machine learning streamlined operations like invoice-to-cash and research workflows. J&J used task mining to understand real activities and automate effectively. Collaborations in multi-omics and genomics extended AI into advanced healthcare innovation. The initiative nears a \$500 million impact within three years, shifting employees to higher-value

work. Key challenges included process complexity, scalability, and workforce concerns over job loss. J&J addressed these through better planning, upskilling, and change management. Future plans include global AI partnerships and expanding use in disease prediction and drug discovery. J&J's case highlights AI's power to transform legacy healthcare operations at scale.

5.4 Sumitomo Dainippon Pharma: Streamlining Global Regulatory Submissions

Sumitomo Dainippon Pharma adopted Veeva Vault Submissions and Vault Submissions Archive to unify its regulatory submissions processes. This implementation provided a single authoritative source for submission development, enabling the company to respond more quickly to health authority requests. The centralized system improved visibility into global regulatory processes and simplified correspondence with health authorities. (18)

5.5 Aris Global Life Sphere Platform

Aris Global's Life Sphere platform is widely adopted in pharmacovigilance, clinical trial management, and regulatory compliance. For example, **Bayer** implemented LifeSphere Safety to streamline adverse event reporting, improving data accuracy and regulatory compliance.

5.6 Helsinn Healthcare leveraged Life Sphere Clinical for end-to-end trial management, enhancing patient safety and operational efficiency.

5.7 Genmab utilized Life Sphere RIM to centralize regulatory information, accelerating submission timelines and collaboration across teams.

5.8 Lundbeck adopted Life Sphere PV to integrate global safety data, reducing manual errors and improving signal detection. The platform's cloud-native architecture allows scalable deployment and real-time insights, supporting pharmaceutical companies in meeting global regulatory demands. Customers report improved data transparency, audit readiness, and cross-functional collaboration. LifeSphere's modular design enables tailored solutions fitting diverse organizational needs, making it a key tool in digital transformation initiatives in life sciences. Overall, Aris Global LifeSphere enhances efficiency, compliance, and innovation in drug development and safety monitoring.

5.9 Master Control Implementations

a. Thermo Fisher Scientific integrated data and analytics into their quality and regulatory strategy using MasterControl, empowering over 30,000 users to work more efficiently. (19)

b. Noveome Biotherapeutics utilized Master Control to develop a novel biologic, ST266, demonstrating the platform's support for innovation in life sciences. (20)

- **Use Cases:** Companies have reported improved audit readiness, faster approval timelines, and reduced compliance costs after AI adoption. (21)

Table 1. Comparison of AI Tools

Tool / Platform	Type	Key Features	Regulatory Compliance Applications	Used by / Notable Users
IQVIA SmartSolve	Quality & Compliance Management	Workflow automation, audit trails, document control, risk management	FDA/EMA compliance, CAPA management, GxP documentation	Global pharma clients
MasterControl	QMS & Document Control	eQMS, real-time audit readiness, version control, training tracking	21 CFR Part 11 compliance, audit readiness, SOP management	Pfizer, Abbott, Thermo Fisher
Veeva Vault QMS	Cloud Quality & Compliance	Centralized regulatory content, submission tracking, inspection readiness	Regulatory submissions (NDA/ANDA), validation documentation, eCTD compliance	GSK, Sanofi, Bayer
ArisGlobal LifeSphere	Regulatory Information Management	Global submission management, dossier planning, automation for xEVMPD, IDMP	eCTD/NDA/IND filing, label compliance, pharmacovigilance reporting	Novartis, Takeda, Boehringer Ingelheim
SAP S/4HANA for Product Compliance	Enterprise Compliance Platform	Chemical & product compliance, automated safety data sheets, label generation	Regulatory reporting (REACH, GHS, FDA), real-time compliance tracking	Bayer, Roche
Ennov Regulatory	Regulatory Information Management	eCTD publishing, submission lifecycle tracking, dossier compliance tools	IND/NDA/ANDA submissions, lifecycle management, multi-agency alignment	Biopharma SMEs, EU-based companies
Freyr SUBMIT PRO	Regulatory Submission Software	Structured eCTD preparation, auto-formatting, validation tools	Global eCTD/NeeS/ACTD submissions, lifecycle management, agency-specific publishing	Regulatory service providers, CROs
DocuSign Life Sciences Module	Digital Signature & Workflow	21 CFR Part 11 compliant e-signatures, workflow automation	Regulatory sign-off workflows, audit trails, submission approval chains	FDA-regulated companies
ZenQMS	Quality Management System	Document control, change management, training tracking	GxP compliance, 21 CFR Part 11, audit preparedness	Small and mid-size pharma
Acuta Regulatory Platform	Regulatory Intelligence & Submissions	Cloud RIM, structured authoring, data analytics	Regulatory planning, labeling compliance, dossier submissions	CROs, Regulatory Affairs teams

6. Challenges and Considerations

- Data Privacy:** AI must comply with HIPAA, GDPR, and similar laws.
- Legacy Integration:** Older systems may not support modern AI tools without substantial upgrades.
- Explainability:** Regulatory bodies require transparent, interpretable AI models.
- Workforce Training:** Employees need upskilling to collaborate with AI systems.

7. Regulatory Oversight and Future Outlook

Regulatory agencies play a crucial role in shaping AI adoption. The FDA and EMA are actively developing frameworks to evaluate AI/ML systems for compliance use. Trends such as generative AI in regulatory writing, blockchain for supply chain transparency, and AI-powered audits are expected to gain traction. The future lies in

collaborative innovation that balances compliance, efficiency, and ethical use of AI.

8. Conclusion

AI offers a powerful means to modernize regulatory compliance in pharmaceuticals and healthcare. By automating documentation, enhancing regulatory intelligence, and enabling proactive compliance management, AI systems improve safety, speed, and reliability. However, success depends on responsible implementation, transparency, and continuous collaboration among industry stakeholders, regulators, and technology providers. (22)

Acknowledgements

I would like to express my sincere gratitude to the editorial team and reviewers of International Journal of Drug Regulatory Affairs for their valuable feedback and support throughout the review and publication process. Their

constructive comments have significantly enhanced the quality of article.

Financial Disclosure statement:

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Reference

1. Amisha, Malik P, Pathania M, Rathaur VK. Overview of artificial intelligence in medicine. *J Family Med Prim Care.* 2019;8(7):2328–31.
2. Rajkumar A, Dean J, Kohane I. Machine learning in medicine. *N Engl J Med.* 2019;380(14):1347–58.
3. Topol E. High-performance medicine: the convergence of human and artificial intelligence. *Nat Med.* 2019;25(1):44–56.
4. U.S. Food and Drug Administration. Artificial intelligence and machine learning (AI/ML)-based software as a medical device (SaMD) [Internet]. Silver Spring (MD): FDA; 2021 [cited 2025 May 18]. Available from: <https://www.fda.gov/>
5. IBM Watson Health. Artificial intelligence for smarter clinical trials [Internet]. Armonk (NY): IBM Corporation; 2021 [cited 2025 May 18]. Available from: <https://www.ibm.com/watson-health/>
6. Kumar S, Singh M, Goyal N. Artificial intelligence applications in clinical trial documentation: A review. *J Pharm Innov.* 2023;18(2):245–53
7. ArisGlobal. LifeSphere Regulatory platform overview [Internet]. Waltham (MA): ArisGlobal; 2023 [cited 2025 May 18]. Available from: <https://www.arisglobal.com/>
8. Deloitte. Intelligent compliance: the AI-powered future of regulatory compliance [Internet]. New York (NY): Deloitte Insights; 2021 [cited 2025 May 18]. Available from: <https://www2.deloitte.com/>
9. Aris Global. Bayer streamlines pharmacovigilance with LifeSphere Safety [Internet]. Waltham (MA): Aris Global; 2021 [cited 2025 May 18]. Available from: <https://arisglobal.com/customer-stories/bayer>
10. Tiwari A, Gupta S. Impact of RPA and AI on documentation in healthcare industry. *Health Inform J.* 2020;26(4):2736–49.
11. Dwivedi YK, Hughes DL, Ismagilova E, Aarts G, Coombs C, Crick T, et al. Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. *Int J Inf Manage.* 2021;57:101994.
12. McKinsey & Company. The role of AI in pharmacovigilance: improving adverse event detection [Internet]. New York (NY): McKinsey & Company; 2020 [cited 2025 May 18]. Available from: <https://www.mckinsey.com/>
13. Ghosh S, Das R. AI in drug regulatory affairs: A strategic overview. *Asian J Pharm Sci.* 2022;17(4):567–74.
14. Lee D, Yoon SN. Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. *Int J Environ Res Public Health.* 2021;18(1):271.
15. Singhal N, Sharma P. Challenges and opportunities of AI in pharmaceutical manufacturing. *Pharma Times.* 2021; 53(7):14–9.
16. Wang F, Casalino LP, Khullar D. Deep learning in medicine—promise, progress, and challenges. *JAMA Intern Med.* 2019;179(3):293–4.
17. World Health Organization. WHO guidance on the ethics and governance of artificial intelligence for health [Internet]. Geneva: WHO; 2021 [cited 2025 May 18]. Available from: <https://www.who.int/>
18. Veeva Systems Inc. Sumitomo Dainippon Pharma adopts Veeva Vault RIM to streamline global regulatory submissions [Internet]. Pleasanton (CA): Veeva Systems Inc.; 2019 Jul 24 [cited 2025 May 18]. Available from: <https://ir.veeva.com/investors/news-and-events/latest-news/press-release-details/2019/Sumitomo-Dainippon-Pharma-Adopts-Veeva-Vault-RIM-to-Streamline-Global-Regulatory-Submissions/default.aspx>
19. MasterControl. Thermo Fisher Scientific empowers 30,000 users with integrated data and analytics [Internet]. Salt Lake City (UT): MasterControl; [cited 2025 May 18]. Available from: <https://www.mastercontrol.com/>
20. MasterControl. Noveome Biotherapeutics advances novel biologic ST266 with MasterControl [Internet]. Salt Lake City (UT): MasterControl; [cited 2025 May 18]. Available from: <https://www.mastercontrol.com/>
21. Pharma Tech Outlook. Aris Global LifeSphere improves data transparency and audit readiness [Internet]. New York (NY): Pharma Tech Outlook; 2021 [cited 2025 May 18]. Available from: <https://www.pharmatechoutlook.com/cxoinsights/arис-global-lifesphere-improves-data-transparency-nwid-733.html>
22. European Commission. Ethics guidelines for trustworthy AI [Internet]. Brussels: High-Level Expert Group on AI; 2020 [cited 2025 May 18]. Available from: <https://digital-strategy.ec.europa.eu/>