

Available online on 15 Mar, 2025 at <https://ijdra.com/index.php/journal>

International Journal of Drug Regulatory Affairs

Published by Diva Enterprises Pvt. Ltd., New Delhi

Associated with RAPS & Delhi Pharmaceutical Sciences & Research University

Copyright© 2013-25 IJDRA

Review Article

Comparative Study of Medical Device Regulation in US, EU and Canada

Jayesh V. Wadge*^a, Sanjay B. Patil^b^aDepartment of Drug Regulatory Affairs, SNJB Shriman Suresh Dada Jain College of Pharmacy, Chandwad Nashik.^bProfessor, Department of Pharmaceutics, SNJB Shriman Suresh Dada Jain College of Pharmacy, Chandwad Nashik.

Abstract

This comparative study examines the regulatory frameworks for medical devices in three key markets: the United States (US), the European Union (EU), and Canada. While the overarching goal of these frameworks is to ensure the safety, efficacy, and quality of medical devices, each region employs distinct approaches in terms of regulatory bodies, classification systems, approval processes, and post-market surveillance mechanisms. In the US, the FDA oversees medical device regulation through processes like 510(k) premarket notifications for moderate-risk devices and Premarket Approval (PMA) for high-risk devices. The EU, governed by the Medical Device Regulation (MDR), relies on Notified Bodies to assess devices based on risk categories and requires clinical evaluations and post-market surveillance. Canada follows a similar risk-based classification, with Health Canada managing device approval and market entry, requiring Medical Device Licenses for most products and Investigational Testing Authorization (ITA) for clinical trials. This study highlights key similarities and differences across these regions, including the role of clinical evidence, regulatory compliance, and post-market monitoring. Understanding these distinctions is crucial for manufacturers seeking to navigate the complex global regulatory environment and ensure successful market access for their devices.

Keywords: Dossier Registration, medical device regulation, 510(k) premarket notifications, Premarket Approval, Medical Device Regulation (MDR), Investigational Testing Authorization (ITA), Health Canada

Article Info: Received 18 Dec 2024; Review Completed 06 Feb 2025; Accepted 09 Feb 2025

Cite this article as:

Wadge JV, Patil SB. Comparative Study of Medical Device Regulation in US, EU and Canada. Int. J. Drug Reg. Affairs [Internet]. 2025 Mar 15 [cited 2025 Mar 15]; 13(1):6-11. Available from: <http://ijdra.com/index.php/journal/article/view/735>

DOI: <https://doi.org/10.22270/ijdra.v13i1.735>

*Corresponding author

1. Introduction

Any item designed for medical use is referred to as a medical device. Because employing a technology for medical purposes carries a high risk of damage. (1) For these reasons, before permitting the gadget to be sold in their nation, regulatory bodies must provide sufficient confidence that it is safe and effective. Generally speaking, the degree of testing necessary to demonstrate a technology's utility and safety increases in direct proportion to the risk the object poses. The patient's potential benefit increases in direct proportion to the risk involved.(1)

Different medical devices have different intended uses and indications. From straightforward, low-risk tools like medical thermometers, tongue depressors, and Single High-risk gadgets include pacemakers, implants, and prostheses; they range from gloves and bedpans to complex, life-supporting implants and devices with built-in software that facilitate medical testing. One of the main areas of biomedical engineering is medical device design. Since numerous regulatory bodies from all over the world keep an eye on medical device marketing, it is challenging to come up with a uniform definition.(1)

The proper definition of a medical device differs depending on the locality, and groups are always debating and promoting the idea as a whole. This is because of small language variations that prevent medical device definitions from being harmonized globally.(1)

1.1 United States:

An instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other comparable or related item is referred to as a device. Section 201(h) of the Federal Food, Drug, and Cosmetic (FD&C) Act states that a component part or accessory is one that is: Recognized in the official National Formulary or the United States Pharmacopoeia, or any supplement to them.(1)

Designed to be used in the diagnosis of diseases in humans or other animals, or in the treatment, prevention, cure, or mitigation of disease or other disorders; Designed to change the structure or any function of the body of an animal or man, but which does not rely on metabolism to achieve its primary goals and does not act chemically on, within, or on top of the body of an animal or man.(1)

1.2 European Union:

Medical equipment, an essential part of modern infrastructure, play a major role in the health of people worldwide. The current Medical technology is the cornerstone of healthcare and is necessary for both preventing, identifying, and tracking illness as well as for delivering safe and efficient treatment. (2)

According to the current European legislation 93/42/EEC on medical devices, also referred to as the Medical Device legislation, a medical device is defined as follows:

The term "medical device" refers to any tool, apparatus, appliance, material, or other item, whether used alone or in combination, including the software necessary for its appropriate use, that the manufacturer plans to use for people in order to: Identify, prevent, monitor, treat, or alleviate disease

The identification, tracking, management, or reduction of an injury or disability, Examine, substitute, or alter a physiological process or anatomical feature; regulation of conception, and which may be aided in its function but does not accomplish its primary intended activity in or on the human body through pharmacological, immunological. (2)

1.3 Canada:

In Canada, the regulation of medical devices is managed by **Health Canada**, a federal department responsible for ensuring the safety, effectiveness, and quality of health products. The medical device regulatory framework is primarily governed by the **Medical Devices Regulations (MDR)**, under the **Food and Drugs Act** (FDA), which aims to protect and promote public health by regulating devices sold in Canada. (3)

2. Medical Devices Regulatory Framework in US (1, 4-9):

In the US, medical device regulation is governed by the Federal F, D, and C Acts. Prior to a medical gadget being made available for purchase in the United states, the Food and Drug Administration (FDA) must receive and approve a marketing application. In the US, pre- and post-market surveillance of medical devices is mainly the responsibility of the FDA's Centre for Devices and Radiological Health (CDRH). In the US, medical devices are categorized using a process called "risk-based categorization," which is based on the risk involved in their use. Three steps are involved in the classification of devices. (1)

- Class I devices are low-risk devices. Examples include bandages, handheld surgical instruments, and nonelectric wheelchairs.
- Class II devices are intermediate-risk devices. ...
- Class III devices are high-risk devices that are very important to health or sustaining life.

2.1 Class I devices:

These are medical equipment that don't pose a risk to patients' safety or health. General controls that apply to Class I (lowest risk) devices are well recognized standards

for reporting, post-market surveillance, manufacturing, and labeling. A device is categorized as class I when there is a plausible chance that general controls by themselves will be enough to guarantee safety and effectiveness. Additionally, the FDA now has the power to implement countermeasures like seizures and product recalls. Before going on sale, the majority of class I devices are exempt from a formal FDA inspection. The FDA does not have to conduct an independent evaluation of a product's efficacy and safety before it is released. (1)

2.2 Class II devices:

Class II medical devices are riskier since there is enough data to show that generic controls are insufficient to guarantee efficacy and safety. suggest that specific controls are necessary. These devices must pass more stringent testing and have some limitations that the FDA may authorize since they are more likely to cause harm than class I devices. Additionally, the FDA must approve the majority of class II devices through the 510(k) premarket notification process before they can be commercialized. Medical device makers must prove that their new product is an exact replica of a legally marketed product in order to pass the 510(k) process. (1)

2.3 Class III devices:

Class III medical equipment either considerably reduces the risk of harm to a person's health or maintains or sustains life. heart valves and pacemakers. (1)

2.4 Premarket notification 510(k) process:

A 510(k) is a premarket file submitted to the FDA to demonstrate the safety and efficacy of a commercially available device. Most class II devices (termed 510k) require pre-market entry notification. In essence, this is a less stringent regulatory evaluation method than the PMA approach. The 510(k) application must establish the new product's resemblance to an existing US market product. (10)

2.5 PMA process:

All Class III devices are evaluated for efficacy and safety during the PMA process. This is one of the most stringent systems for regulating medical equipment. Before marketing approval, clinical trials demonstrating the product's safety and effectiveness are required under the PMA process. Due to the high degree of risk associated with these products, the FDA has determined that general and special controls alone are insufficient to assure the safety and efficacy of Class III devices. (7)

2.6 Registration process:

US FDA Registration Process for Medical Devices and IVDs:

Step 1: Look for a different (predicate) device with the same technology and intended use as the medical device in the FDA categorization database. or in vitro diagnostic (IVD) apparatus. Particular attention should be paid to the predicate devices' seven-digit regulation number and three-letter product code. Use the 513(g) approach to ask the FDA for classification if the classification cannot be established. (11)

Step 2: A small number of Class I devices are exempt from most QSR requirements. Establish a quality management system (QMS) that complies with 21 CFR Part 820's definition of the FDA Quality System Regulation (QSR) for Class II and III devices.

Step 3: Clinical research will surely be necessary for all novel Class II and Class III devices. Get "pre-submission (pre-sub)" feedback from the FDA.

Step 4: File an application for an investigational device exemption (IDE) if clinical trials are necessary. After developing a protocol for a clinical trial, conduct the study. Non-significant-risk research can be carried out with IRB approval.

Step 5: Get ready to submit an application for a Class II device's 510(k) Premarket Notification and pay the required fee. For a Class III device, prepare and submit a premarket approval (PMA) application. Pay the fee for submitting a PMA.

Step 6: Your Class III device's maker and any major suppliers that helped with its design and manufacture are inspected by the FDA.

Step 7: The FDA issues 510(k) approval letters for Class II devices, which are posted online.

Step 8: The application needs to fully adhere to QSRs right now. The FDA may perform arbitrary inspections and issue a Form 483 for noncompliance once a device has been registered, but it will not review the compliance of Class I or II device manufacturers before to registration.

Step 9: Choose an FDA US agent representative to serve as your local point of contact with the FDA if the applicant does not physically reside in the US.

Step 10: List the device on the FDA website and register the organization using the FURLS system. You also have to pay yearly fees for listing and registering your business.

Step 11: The applicant can now advertise and market their products in the US. The FDA website will provide details on the business in addition to the development of the registration process for the gadget.

3. Medical Devices Regulatory Framework in European Union:

The use of medical devices in the EU is governed by three EC Directives:

Medical device Directive 93/42/EEC Directive 90/385/EEC on active implanted medical devices and Directive 98/79/EC on in vitro medical devices. These regulations set standards for medical device marketing in any nation that is a member of the European Union.

Annex IX of Directive 93/42/EEC states that medical equipment are categorized using the "risk-based" system. There were four product classes assigned to it:

- **Class I:** Low risk devices used for basic functions or non-invasive procedures
- **Class IIa:** Moderate risk devices
- **Class IIb:** Significant risk devices that fall between Class IIa and Class III

- **Class III:** Highest risk devices that support vital functions or are used in critical procedures

There are substantial differences between the EU and US regulations regarding devices, especially with regard to the clinical proof needed for premarket approval. To be sold in the EU, a medical device needs to be CE-labeled, and the maker must adhere to EU regulations in order to obtain a CE certificate. (2)

The appropriate organization, which is in charge of monitoring device certification in each nation, will conduct the inspection to verify technical data and manufacturing standards. The Notified Bodies oversee high-risk equipment directly; these bodies are chosen by the manufacturer in each EU nation. The notified entity shall provide design evaluations and CE certificates to competing authorities for items in higher risk classes.

3.1 CE marking:

Manufacturers of medical devices must CE mark their goods to guarantee that they are secure and appropriate for the use for which they are designed. The French term "Conformité Européenne" can be shortened to "CE" By applying the CE Marking, a manufacturer can attest that a product satisfies the essential standards of any applicable European health, safety, and environmental protection regulations. It also ensures that the product will have unfettered access to the EU single market and EFTA. The notified bodies are in charge of the CE marking.(12)

3.2 Notified Bodies (NBs)

The device's adherence to the European Directive is attested by a recognized private or public organization. Manufacturers have the option to select their NBs that are preferred by EU members. The notifying bodies will be chosen by the state's competent authorities, and the NBs will have the authority to award the CE mark. (12)

3.3 The European CE medical device approval process (2, 12):

Step 1: Determine which EU Medical gadget Directive your gadget is covered under. Medical Devices or the Active Implantable Medical Devices Directive (AIMDD) **Step 2:** of Directive (MDD) 93/42/EEC: Your equipment shall be categorized as either Class I (non-sterile, non-measuring), Class I (sterile, measuring), Class IIa, Class IIb, or Class III/AMID in accordance with Annex IX of the Medical Devices Directive (MDD). Class III devices are subject to the same regulatory standards as active implanted medical devices.

Step 3: Implement a Quality Management System (QMS) in accordance with Annex II or V of the QMS for all devices, with the exception of Class I (non-sterile, non-measuring) devices. MDD. In order to attain QMS compliance, businesses frequently use the ISO 13485 standard. Officially, a QMS is not required for Class I (non-sterile, non-measuring) items. Despite not being audited by a notified organization, the PMS approach is necessary (NB).

Step 4: Produce a technical file that thoroughly describes your medical device and demonstrates conformity with 93/42/EEC for Classes I through IIb. Every gadget will

need clinical information. The majority of these details should be pertinent to the device in issue. For Class III/AIMD devices, a design dossier needs to be created. Class IIb and Class III implants require clinical research, however pre-existing clinical data can be sufficient. Prior authorization from a qualified European authority is required for clinical research conducted in Europe.

Step 5: Select an authorized representative (EC Rep) who is present in Europe if you don't already have one. The EC Representative ought to be capable of deal with regulatory matters. Provide the EC REP's name and address on the device's label, packaging, or usage instructions.

Step 6: Your QMS and technical file, or design dossier, must be examined by a qualified individual for all devices except Class I (non-sterile, non-measuring) devices. body, an impartial third party authorized by European regulators to evaluate medical device companies and goods.

Step 7: After a Notified Body audit is completed successfully, your facility will be granted an ISO 13485 certificate and a European CE Marking Certificate for any devices that are not Class I (non-sterile, non-measuring) equipment. Every year, the ISO 13485 certification must be renewed. Usually, a CE marking certificate is valid for three years.

Step 8: Provide a Declaration of Conformance, a document the manufacturer drafts attesting to the item's compliance with the relevant directive. You can now ask for the CE.

Step 9: All Class I devices must be registered with the appropriate government in your home country by you or

your EC REP. Class IIa, IIb, or III devices cannot be used in some EU countries until further registration is required.

Step 10: Annual NB audits are not necessary for Class I (non-sterile, non-measuring) goods. Nonetheless, you must finish CER updates and PMS tasks.

A Notified Body will carry out an annual audit for all other classes to make sure you are still adhering to Regulation (EC) No. 93/42/EEC or Regulation (EC) No, 90/385/EEC. If you fail the audit, your CE marking certificate will be revoked. CER updates and PMS duties need to be finished.

4. Medical Devices Regulatory Framework in Canada:

Health Canada is the government authority responsible for overseeing the regulation of medical devices in the country. The Medical Devices Directorate (MDD) within Health Canada specifically handles medical device approvals, assessments, and post-market activities. (3)

4.1 Legal Framework:

4.1.1 Food and Drugs Act (FDA):

The primary legislation that governs medical devices in Canada. While the FDA primarily addresses food, drugs, and cosmetics, its provisions also apply to medical devices under Part 1, Division 3. (3)

4.1.2 Medical Devices Regulations (MDR):

These regulations, created under the FDA, define the requirements for the licensing, classification, and post-market monitoring of medical devices. The MDR also covers the requirements for the manufacturing and importing of medical devices into Canada. (3)

Table 1. Medical Device Classification System in Canada (3,10):

International Classification	Risk Level	Examples
Class I	Low risk	Elastic bandages, Tongue depressors, Hand-held manual toothbrushes, Hot water bottles, Disposable razors
Class II	Low-Moderate risk	Blood glucose meters, Powered wheelchairs, Pregnancy test kits, Powered surgical instruments, Powered air-purifying respirators
Class III	High-Moderate risk	Implantable pacemakers, Surgical mesh, Intraocular lenses, Silicone breast implants, Implantable cardioverter defibrillators
Class IV	High risk	Radiation therapy machines, Implantable heart, Defibrillators, Implantable ventricular assist devices, CT scanners MRI machines

Table 2. Health Canada Registration Process for Medical Devices and IVDs (3):

Classification	Approval procedure
Class I	<ul style="list-style-type: none"> ➤ The device must acquire MDEL certification. ➤ The device required an application for registration with an applicable fee. Administrative review is not required
Class II	<ul style="list-style-type: none"> ➤ Devices must comply with ISO 13485 certification & Quality management systems (QMS)
Class III	<ul style="list-style-type: none"> ➤ The devices must acquire MDL certification.
Class IV	<ul style="list-style-type: none"> ➤ The device requires an application that includes supporting documents, A declaration of conformity with an applicable fee. Administrative review is required.

Note: After approval, registration will be granted.

Table 3. Points of comparison for medical device registration processes in US,EU and Canada (1-13)

Aspect	US	EU	Canada
Regulatory Authority	FDA (Food and Drug Administration)	National authorities + Notified Bodies	Health Canada
Key Regulations	Federal Food, Drug, and Cosmetic Act	Medical Device Regulation (MDR) 2017/745	Food and Drugs Act and Medical Device Regulations (MDR)
Classification System	Class I, II, III based on risk	Class I, IIa, IIb, III based on risk	Class I, II, III, IV based on risk
Approval Pathways	510(k) for Class II (moderate risk); PMA for Class III (high risk)	Self-certification for Class I; Notified Bodies for Class II and III	Class I: No license required, Class II-IV: Medical Device License required
Pre-market Clinical Data	Required for Class III devices and some Class II	Required for higher-risk devices (Class IIb, Class III)	Required for Class III and IV devices
Post-Market Surveillance	MedWatch and mandatory reporting (MDR)	Periodic Safety Update Reports (PSUR)	MDAR (Medical Device Adverse Event Reporting) program
Clinical Trial Requirements	Required for Class III and some Class II	Required for higher-risk devices (Class IIb, Class III)	Required for Class III and IV devices
Quality Standards	ISO 13485, ISO 14971	ISO 13485 , EU-specific standards under MDR/IVDR	ISO 13485, ISO 14971
CE Marking	Not required	Required for marketing in the EU	Not required
Not required	Mandatory under MDR (Medical Device Reporting)	Vigilance system for reporting events	MDAR (Medical Device Adverse Event Reporting)
Regulatory Fees	Device application fees (e.g., 510(k), PMA)	Fees depend on device class and member state	Device license fees for Class II-IV devices

5. Conclusion

In conclusion, while the United States (US), the European Union (EU), and Canada share the common objective of ensuring the safety, efficacy, and quality of medical devices, the regulatory frameworks in each region are distinct in structure, processes, and enforcement mechanisms. These differences create unique challenges and opportunities for medical device manufacturers seeking to enter multiple markets.

- In the US, the FDA plays a central role in medical device regulation, with a focus on premarket notifications for lower-risk devices (through the 510(k) process) and rigorous Premarket Approval (PMA) for higher-risk devices. The FDA's authority is centralized, which streamlines regulatory processes but can result in stringent requirements for high-risk devices. Post-market surveillance is also a key aspect of FDA regulation, with robust systems like the Medical Device Reporting (MDR) program.
- In the EU, the regulatory framework is decentralized, with individual member states' National Competent Authorities (NCAs) overseeing enforcement, while Notified Bodies are responsible for assessing conformity to the Medical Device Regulation (MDR). The EU system places significant emphasis on clinical evaluations, especially for higher-risk devices, and requires manufacturers to ensure ongoing post-market surveillance. The move from the

Medical Device Directive (MDD) to the MDR has increased the regulatory burden, particularly for manufacturers of high-risk devices.

- Canada's regulatory approach is managed by Health Canada and is similar to the US in terms of classification and premarket approval. However, Canada requires additional Medical Device Establishment Licenses (MDEL) for manufacturers, importers, and distributors, and emphasizes a strong post-market surveillance system. Canada's regulatory landscape is more centralized than the EU's but shares similarities with the US in terms of classifying devices and requiring evidence of safety and effectiveness.

Acknowledgements

I would like to express my sincere gratitude to the editorial team and reviewers of International Journal of Drug Regulatory Affairs for their valuable feedback and support throughout the review and publication process. Their constructive comments have significantly enhanced the quality of article.

Financial Disclosure statement:

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Reference

1. U.S. Food and Drug Administration. Classify your medical device [Internet]. 2020 Feb 7 [cited 2024 Nov 21]. Available from: <https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device>
2. European Commission DG Health and Consumer Directorate B, Unit B2 —Cosmetics and Medical Devices. Medical devices: Guidance document-Classification of medical devices guidelines relating to the application of the Council Directive 93/42/EEC on medical devices [Internet]. ec.europa; 2010 Jun [cited 2024 Oct 16]. Available from: <https://ec.europa.eu/docsroom/documents/10337/attachments/1/translations/en/renditions/pdf>
3. Canada. Medical Devices Regulations (SOR/98-282) [Internet]. Canada.ca;1998 [cited 2024 Dec 27]. Available from: <https://laws-lois.justice.gc.ca/eng/regulations/sor-98-282/>
4. Medical Device Classification Product Codes Guidance for Industry and Food and Drug Administration Staff Document [Internet]. Regulation.gov; 2013 Apr 11 [cited 2024 Nov 21]. Available from: <http://www.regulations.gov>
5. Gupta SK. Medical device regulations: A current perspective. *J Young Pharm.* [Internet]. 2016 [2024 Dec 15]; 8:6-11. Available from: <https://jyoungpharm.org/article/822>
6. U.S. Food and Drug Administration. How to determine if your product is a medical device [Internet]. US: US FDA; 2022 Sept 29 [cited 2024 Oct 29]. Available from: <https://www.fda.gov/medical-devices/classify-your-medical-device/how-determine-if-your-product-medical-device>
7. U.S. Food and Drug Administration. A history of medical device regulation & oversight in the United States [Internet]. US: US FDA; 2019 Jun 24 [cited 2023 Apr 21]. Available from: <https://www.fda.gov/medical-devices/overview-device-regulation/history-medical-device-regulation-oversight-united-states>
8. U.S. Food and Drug Administration. Classify your medical device [Internet]. US: US FDA; 2020 Feb 7 [cited 2024 Nov 2]. Available from: <https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device>
9. U.S. Food and Drug Administration. Premarket notification 510(k) [Internet]. US: US FDA; 2022 Oct 3 [cited 2024 Oct 21]. Available from: <https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/premarket-notification-510k>
10. Faris O, Shuren J. An FDA viewpoint on unique considerations for medical-device clinical trials. *N Engl J Med.* [Internet]. 2017 [2024 Nov 25]; 376(14):1350-7. Available from: <https://pubmed.ncbi.nlm.nih.gov/28379790/>
11. U.S. Food and Drug Administration. Premarket submission [Internet]. US: US FDA; 2022 Oct 3 [cited 2024 Oct 21]. Available from: <https://www.fda.gov/medical-devices/how-study-and-market-your-device/premarket-submissions-selecting-and-preparing-correct-submission>
12. European Medicines Agency. Medical devices [Internet]. EMA;2025 [cited 2024 Dec 27]. Available from: <https://www.ema.europa.eu/en/human-regulatory-overview/medical-devices>
13. Candarone PT. Labelling Regulatory Requirements for Medical Devices. US Department of Health and Human Services [Internet]. US: Public Health Service US FDA; 1989 Jun 13 [cited 2024 Oct 15]. Available from: [https://www.fda.gov/files/medical%20devices/published/Labelling---Regulatory-Requirements-for-Medical-Devices-\(FDA-89-4203\).pdf](https://www.fda.gov/files/medical%20devices/published/Labelling---Regulatory-Requirements-for-Medical-Devices-(FDA-89-4203).pdf)