OCULAR DRUG DELIVERY: RECENT UPDATES

  • Zakir Foziyah
  • Manvi Singh
  • Zeenat Iqbal

Abstract

Ophthalmic route is one of the most promising delivery systems for the treatment of eye ailments. Delivery of medicaments to anterior segment of the eye is an easy task. However with the rising number of posterior segment diseases such as diabetic retinopathy, age-related macular degeneration etc. delivery to the target has become a challenging task. A number of scientists have tried various approaches to accomplish the objective. Novel drug delivery system is an effective strategy to combat anterior and posterior eye ailments. In addition, the technique improves the pharmaceutical and pharmacological performance of the drug molecule. The advent of nanotechnology and its use in devising newer and effective ocular systems has added impetus to ocular therapy. However the need of the hour is to create stable as well as non-toxic systems which are able to be used for chronic therapies. The role of various novel delivery stratagem such as nanoparticles, nanomicelles, liposomes, niosomes, dendrimers in ocular drug delivery has been discussed in addition to their recent advances in the area.

Keywords: Novel Drug Delivery, Ocular, Nanoparticles.

Downloads

Download data is not yet available.

References

1. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Delivery Rev. 2006; 58(11):1131-35.
2. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol. 2013; 2(2): 47-64.
3. del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008; 13(3-4): 135-43.
4. Sahoo SK, Dilnawaz F, Kumar SK. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008; 13(3-4): 144-51.
5. Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems - recent advances. Prog Retin Eye Res. 1998; 17(1):33-58.
6. Kayser O, Lemke A, Hernandez-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Current Pharmaceutical Biotechnology. 2005;6(1): 3-5.
7. Vaishya RD, Gokulgandhi M, Patel S, Minocha M, Mitra AK. Novel dexamethasone-loaded nanomicelles for the intermediate and posterior segment uveitis. AAPS PharmSciTech. 2014; 15(5):1238-51.
8. Liaw J, Chang SF, Hsiao FC. In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther. 2001;8(13):999-1004.
9. Velagaleti PRAE, Khan IJ, Gilger BC, Mitra AK. Topical delivery of hydrophobic drugs using a novel mixed nanomicellar technology to treat diseases of the anterior and posterior segments of the eye. Drug Deliv. Technol. 2010;10(4):42–7.
10. Parveen S, Mitra M, Krishnakumar S, Sahoo SK. Enhanced antiproliferative activity of carboplatin-loaded chitosan-alginate nanoparticles in a retinoblastoma cell line. Acta Biomater. 2010; 6(8):3120-31.
11. Nagarwal RC, Kumar R, Pandit JK. Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci. 2012;47(4):678-85.
12. Ibrahim MM, Abd-Elgawad AH, Soliman OA, Jablonski MM. Natural Bioadhesive Biodegradable Nanoparticle-Based Topical Ophthalmic Formulations for Management of Glaucoma. Transl Vis Sci Technol. 2015; 4(3):12.
13. Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A,Mittal G. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target. 2011; 19(6):409-17.
14. Nair LK, Vidyanand S, James J, Kumar GSV. Pilocarpine-loaded poly (DL-lactic-co-glycolic acid) nanoparticles as potential candidates for controlled drug delivery with enhanced ocular pharmacological response. J App Polymer Sci. 2012; 124(3): 2030-36.
15. Ibrahim HK, El-Leithy IS, Makky AA. Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol Pharm. 2010;7(2):576-85.
16. Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010; 6(2):324-33.
17. Abrego G, Alvarado HL, Egea MA, Gonzalez-Mira E, Calpena AC, Garcia ML. Design of nanosuspensions and freeze-dried PLGA nanoparticles as a novel approach for ophthalmic delivery of pranoprofen. J Pharm Sci. 2014; 103(10):3153-64.
18. Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004; 56(7):827–40.
19. Kassem MA, Abdel Rahman AA, Ghorab MM, Ahmed MB, Khalil RM. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm. 2007; 340(1-2):126-33.
20. Ali HS, York P, Ali AM, Blagden N. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J Control Release. 2011; 149(2):175-81.
21. Soltani S, Zakeri-Milani P, Barzegar-Jalali M, Jelvehgari M. Comparison of Different Nanosuspensions as Potential Ophthalmic Delivery Systems for Ketotifen Fumarate. Adv Pharm Bull. 2016; 6(3):345-52.
22. Romero GB, Keck CM, Müller RH, Bou-Chacra NA. Development of cationic nanocrystals for ocular delivery. Eur J Pharm Biopharm. 2016; 107(1):215-22.
23. Ambhore NP, Dandagi PM, Gadad AP. Formulation and comparative evaluation of HPMC and water soluble chitosan-based sparfloxacin nanosuspension for ophthalmic delivery. Drug Deliv Transl Res. 2016; 6(1):48-56.
24. Mudgil M, Pawar PK. Preparation and In Vitro/Ex Vivo Evaluation of Moxifloxacin-Loaded PLGA Nanosuspensions for Ophthalmic Application. Sci Pharm. 2013; 81(2):591-606.
25. Khan MS, Vishakante GD, Bathool A. Development and characterization of pilocarpine loaded Eudragit nanosuspensions for ocular drug delivery. J Biomed Nanotechnol. 2013 Jan; 9(1):124-31.
26. Rafie F, Javadzadeh Y, Javadzadeh AR, Ghavidel LA, Jafari B, Moogooee M, Davaran S. In vivo evaluation of novel nanoparticles containing dexamethasone for ocular drug delivery on rabbit eye. Curr Eye Res. 2010; 35(12):1081-9.
27. Mandal B, Alexander KS, Riga AT. Sulfacetamide loaded Eudragit® RL100 nanosuspension with potential for ocular delivery. J Pharm Sci. 2010; 13(4):510-23.
28. Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004; 269(1):1-14.
29. Hathout RM, Mansour S, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech. 2007; 8(1):1.
30. Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine. 2012; 7:123-31.
31. Law SL, Huang KJ, Chiang CH. Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption. J Control Release. 2000; 63(1-2):135-40.
32. Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D. Liposomes as an ocular delivery system of fluconazole: in-vitro studies. Acta Ophthalmol. 2010; 88(8):901-4.
33. Yikang Dai, Rui Zhou, Lin Liu, Yi Lu, Jianping Qi, Wei Wu. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int J Nanomedicine. 2013; 8:1921-33.
34. Mehanna MM, Elmaradny HA, Samaha MW. Ciprofloxacin liposomes as vesicular reservoirs for ocular delivery: formulation, optimization, and in vitro characterization. Drug Dev Ind Pharm. 2009; 35(5):583-93.
35. Sun KX, Wang AP, Huang LJ, Liang RC, Liu K. Preparation of diclofenac sodium liposomes and its ocular pharmacokinetics. Yao Xue Xue Bao. 2006; 41(11):1094-8.
36. Tan G, Yu S, Pan H, Li J, Liu D, Yuan K, Yang X, Pan W. Bioadhesive chitosan-loaded liposomes: A more efficient and higher permeable ocular delivery platform for timolol maleate. Int J Biol Macromol. 2017; 94(Pt A):355-63.
37. Chen H, Pan H, Li P, Wang H, Wang X, Pan W, Yuan Y. The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system. Colloids Surf B Biointerfaces. 2016; 143:455-62.
38. Li H, Liu Y, Zhang Y, Fang D, Xu B, Zhang L, Chen T, Ren K, Nie Y, Yao S, Song X. Liposomes as a Novel Ocular Delivery System for Brinzolamide: In Vitro and In Vivo Studies. AAPS PharmSciTech. 2016; 17(3):710-7.
39. Chetoni P, Monti D, Tampucci S, Matteoli B, Ceccherini-Nelli L, Subissi A, Burgalassi S. Liposomes as a potential ocular delivery system of distamycin A. Int J Pharm. 2015; 15;492(1-2):120-6.
40. de Sá FA, Taveira SF, Gelfuso GM, Lima EM, Gratieri T. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf B Biointerfaces. 2015; 133:331-8.
41. Abdelbary AA, Abd-Elsalam WH, Al-Mahallawi AM. Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: In vitro characterization, ex vivo permeation and in vivo safety assessment. Int J Pharm. 2016; 513(1-2):688-96.
42. El Meshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv. 2016; 23(7):2115-23.
43. Khalil RM, Abdelbary GA, Basha M, Awad GE, El-Hashemy HA. Enhancement of lomefloxacin Hcl ocular efficacy via niosomal encapsulation: in vitro characterization and in vivo evaluation. J Liposome Res. 2016:1-12.
44. Zeng W, Li Q, Wan T, Liu C, Pan W, Wu Z, Zhang G, Pan J, Qin M,Lin Y, Wu C, Xu Y. Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: Mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability. Colloids Surf B Biointerfaces. 2016; 141:28-35.
45. Spataro G, Malecaze F, Turrin CO, Soler V, Duhayon C, Elena PP, Majoral JP, Caminade AM. Designing dendrimers for ocular drug delivery. Eur J Med Chem. 2010; 45(1):326–34.
46. Yavuz B, Bozdağ Pehlivan S, Sümer Bolu B, Nomak Sanyal R, Vural İ, Ünlü N. J Pharm Pharmacol. Dexamethasone-PAMAM dendrimer conjugates for retinal delivery: preparation, characterization and in vivo evaluation. 2016; 68(8):1010-20.
47. Vembu S, Pazhamalai S, Gopalakrishnan M. Potential antibacterial activity of triazine dendrimer: Synthesis and controllable drug release properties. Bioorg Med Chem. 2015; 23(15):4561-6.
48. Kambhampati SP, Mishra MK, Mastorakos P, Oh Y, Lutty GA, Kannan RM. Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells. Eur J Pharm Biopharm. 2015; 95(Pt B):239-49.
49. Mishra V, Jain NK. Acatazolamide encapsulated dendritic nanoarchitectures for effective glaucoma management in rabbits. Int J Pharm. 2014; 461(1-2):380-90.
Statistics
686 Views | 809 Downloads
How to Cite
Foziyah, Z., M. Singh, and Z. Iqbal. “OCULAR DRUG DELIVERY: RECENT UPDATES”. International Journal of Drug Regulatory Affairs, Vol. 4, no. 4, Feb. 2018, pp. 15-22, doi:10.22270/ijdra.v4i4.190.